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FNOL3, A COMPUTER PROGRAM
TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

16g INTRODUCTION

This report describes a computer program FNOL3 for the numerical integration
of ordinary differential equations with initial conditions. These equations are
reduced by the user to a system of first order, simultaneous, ordinary differential
equations with initial conditions and are solved by using fourth order Runge-Kutta
and fourth order Adams-Moulton predictor-corrector methods. FNOL3 is the successor
to the Naval Ordnance Laboratory ordinary differential equation solver FNOL2
and uses many features familiar to users of FNOL2 (the differences are provided
in Appendix E). See reference (a).

FNOL3 is formulated so as to be quite separate from any particular application.
Options make available a convenient flexible package that can be used whenever the
problem is expressible as a system of equations as described above.

The program is written in the FORTRAN IV language for the operating system

currently used on the Laboratory's CDC 6400 computer.

IRJEZ DESCRIPTION OF THE METHODS

The discussions that follow in this section and in Section III are taken
from reference (b). The notation used omits commas from subscripts (fin) except

when there might be an ambiguity (f ). Y is used for true values of the

i,n+l

dependent variable and y for computed values.

Let the system of equations to be solved be given in the form:

‘= = = —_— i=1,2,...,N l
y i dx fi(xsyl!YZs ,YN) ( a)
yi(xo) = Y40 i=1,2,...,N (1b)
T = T(x,yl,yz,...,yN,y'l,y'z,...,y'N) =0 (1c)
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where T 1s the termination condition and Y10 are the initial

,y20’ LD ’YNO
conditions at x = Xy
Let Yin be the value of vy and fin be the value of fi at x=x_. Let h be

the step size in the independent variable x. The Runge-Kutta method uses the

following formulae with the appropriate initial conditions to go from step n to

step n+l.
kil = fi(xn’yln’°"’yNn) i=1,2,...,N (2a)
k;, = fi(xn+%h,yln+%hk11,...,yNn+%hkN1) i=1,2,...,N (2b)
ki = fi(xn+%h,y1n+%hk12,...,yNn hky,) i=1,2,...,N (20)
ki& = f (x +h,yl +hk +hkN3 i=1,2,...,N (24)
AL 6(k +2k 2+2k13 k) i=1,2,...,N (2e)

The Adams-Moulton predictor-corrector method uses the following formulae

to compute the values of Vi n+l using the values of Y4 n-3® ¥4 n-2® ¥4 n-1° and
b b L ’
Yin'
(p) b B B )
yi n+l yin 24(55fin ngi ,n—l+37fi ,n-—2 9fi,n_3) i 1 )2 ye e )N (36)
() (p) -
Yi,0#¢1 = Yin 24(9f1 w1t 198,98 o1ty a2 i=1,2,...,8 (3b)

where the values of Yy at X715 X9 and x3 are found by using the Runge-Kutta

formulae. x, is the first point at which the Adams-Moulton method is used.
Observe that the Adams-Moulton formulae only require two derivative

evaluations to go to the next step. The Runge-Kutta method requires four deri-

vative evaluations for each step.

III. THE ERROR TERMS

We will assume in this section only one ordinary differential equation, so
the 1 from Yin and fin is omitted. The error term for the Adams-Moulton method

is as follows:
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(p) _ h
Tght ™ yn+24(55fn 59fn_l+37fn_2—9fn_3) (la)
(e) _ (p)
Yor1 = Yy 24(9f +19f —Sf —l+fn—2) (1b)
where p stands for predicted value and ¢ for corrected value. (El means
(p)
calculate f at X 11 using Yot
If the calculated values’ of yl,?rz,...,yn and accordingly, of fl’f2""’fn
were exactly correct, then the true ordinate at X 410 Sy Yn+l would satisfy the
equations
h 251 .5 Vv
Y — L = =
ol yn+24(55fn 59fn_l+37fn_2 )+720 h™ y (& ) (2a)
h _15: 5 "
Yn+l yn+24(9fn+1+19fn_5fn—1+fn—2) - 720 ( (2b)
\
where €l and EZ both lie between X _3 and X 410 Y (gl) is the fifth derivative
of y at x = El. So it follows from (1) and (2) that
_(p) _ 251 .5V
Yor1Vn+l “ 720 BT Y (€Y (3a)
(e) _ 3h £(P) 19 .5V
Y41 V041 = B EnerFnr) “ 720 B Y 6 (3b)
Let F(xn+l,Y ) = fn+l(xn+1’Yn+l)’ applying the law of the mean
_e(p) - B (p) _(p)
Err ~ fad1 = PO ¥ ~ FO WD) = g YowDFy G M) (9
: (p)
where nn+1 is between Yn+1 and Yy
It is assumed that h is sufficiently small to ensure that
3h
B [Py ey << 1 (5)
\) \
and also that y (x) does not vary strongly for X _3 < X< X ., 80 that y (gl)

and yv(Ez) can be equated. Equations (3) lead to the useful approximate relation

720 (P)y _ V
751 Y041 Vnt1) by ()
(¢) _ 3h (») | 19, 720 ,(P)
Yotl =~ Ynr1 = 8 a1 Vor1) Ty Cne1 o1’ G207 @D Trbr Vnt D
(c) A3, (p)
atl Tntl F (% 117041~ 551 Ypt1 Vs ?
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so from (5)

(@) o 19 (p)
Yol " Vbl =~ 251041 Vae1)
19 (c) . 19 (p)
1Y 251 Y41 = Yol ¥ 251 okl
270y > 270 () _ 19 (o) . 19 _(p)

251 ‘n+l 251 n+l _ 251 Yn+l © 251 Yn+l

Therefore,

(c) (P _ ()
Yn+1 = yn+l ( Yo+l ~ n+l)

This is the equation programmed when the Adams-Moulton method is selected.

The fourth order Runge-Kutta formulae are

k, = f(xn,yn)

k2 = f(xn+%h,yn+%hkl)
ky = f(xn+%h,yn+%hk2)
k, = £(x_+h,y +hk,)

Y + 6(k +2k +2k

Yn+1 ~ 2 4)'

No simple expressions are known for the precise truncaion errors in the
preceding formulae. An estimate of the error can be obtained, in practice,
in the following way. Let the truncation error associated with a formula of

4th-order accuracy in advancing from x to that at X 41

=X + h in a single
step be denoted by <, hs. Also suppose that <, varies "slowly" with n and is

nearly independent of h when h is small. Then if the true value of y at x

(6)

(7a)

(7b)

(7¢)

(7d)

(7e)

n+l
(h)
is denoted by Yn+1’ the value obtained by two steps starting at x 1 by Yo+1®
and the value obtained by a single step with doubled spacing 2h by y(Zh) there

n+l’

follows approximately
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(h) ~ 5
n+l ~ Tn+l T zcnh (8a)
(2h) ]
Yn+l B yn+-l = cn(Zh) (8b)

when h is small.

From equation (8b)

(2h) ~ ,5_,5
Totl " Yol T 2 GD
so
_(2h) ~ 4 (h)
ntl " Ynkl - 2 e Voed)
Therefore, (h) (2h)
~ (), Tnt17ne1
Yol 5 Yot1 ¥ 15 v

This is the equation programmed when the Runge-Kutta method is selected.

Iv. AUTOMATIC ADJUSTMENT OF STEP SIZE

FNOL3 has the option of automatically varying the step size h, to hold
the truncation errors within bounds fixed by the user. The absolute truncation

errors for the Adams-Moulton method from III-6 are

y(p) _y(C)
i,n+l “1i,n+1 .
AEi = 2 A i=1,2,...,N (1)
and the relative truncation errors are
-
REi=T:)— i=1,2,...,N (2)
yi,n+1

The absolute truncation errors for the Runge-Kutta method from III-9 are

S (2h)
_7i,n+l “i,ntl -
) AEi = 15 i 1,2,:6:.,N (3)
and the relative truncation errors are
- AEi
REi = RO i=1,2,...,N (4)
yi,n+l
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To determine the step size at each step, let El’EZ""’EN be the errors

whether they are absolute or relative errors and let XNE be a step size control

parameter (see page 8). Then if 10—XNE_3 < lEi] < IO_XNE for i = 1,2,...,N,
the step size is not changed. But if IEiI < IO_XNE—3 for all 1, then let
-XNE-1.5
HB = minimum =7 > 1 (5)
i |Ei|+10

and the step size is increased to HB%r‘ h, Jf IEjI > 10_XNE for some J then

lO-XNE-l.S
HB = minimum —— < 1 (6)

3 |Ej|+10_11

|
and the step size is decreased to HBAr' h.
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PROGRAMMING

The user must write a calling program hereafter called MAIN, and three

auxiliary subprograms. The latter are usually called DERIV, TERM, and OUTPUT

and are described later in this gection. Besides calling on FNOL3 and providing

it with initial values, MAIN must contain an EXTERNAL card which denotes that

DERIV, TERM and OUTPUT are the names of subprograms, not variables.

|

| =

[2]

The calling sequence for FNOL3 is

EXTERNAL DERIV, TERM, OUTPUT
CALL FNOL3 (J,N,G,L,M,XNE,X,Y,D,DERIV,TERM,OUTPUT)

(INPUT, INTEGER)

This parameter indicates the integration method.

= 1 Use Runge-Kutta method of integration to termination. Truncation

errors are not calculated; the step size G is not adjustable.

J = 2 Use Runge-Kutta for the first three steps, then Adams-Moulton

for the remainder of the interval of integration. Truncation errors
are calculated. The step size is adjustable unless XNE = 0. If the
step size is adjusted, new starting values are obtained through the

Runge-Kutta method.

J = 3 Use Runge-Kutta throughout. The truncation errors are calculated;

the step size is adjustable unless XNE = 0.

(INPUT,INTEGER)

This 1s the number of simultaneous first order differential equations

to be solved. The maximum number of equations is 30.

(INPUT,REAL)

This is the initial step size; upon return from FNOL3, G retains its

original value.
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(INPUT, INTEGER)

This is the number of Y's beyond (N+3) to be written in the routine
OUTPUT. These additional Y's should be calculated in the routine
TERM, beginning with Y(N+3+1) to Y(N+3+L).

(INPUT,INTEGER) o

This is the number of accepted steps taken between calls to routine
OUTPUT. If M = 0, then printing is determined by values assigned to
Y(N+1) and Y(N+2). Y(N+1) = £(X,¥(1),...,Y(N),D(1),...,D(N)) and is
defined in routine TERM. To generate a call to OUTPUT, Y(N+1) must
change by an amount greater than Y(N+2) since the last call to OUTPUT.
Y(N+2) is assigned a constant value in the routine which calls FNOL3.

(INPUT,REAL)

This is the step size control. The step size is unchanged if the worst

_XNE_3,10-XNE]. The step

size is increased if the errors are all less, than 10_XNE—3. The step

of all the errors lies within the window [10

size is decreased if for some differential equation the error is greater
than 10-XNE.

If Y(N+3) < 0. and XNE # 0., the automatic adjustment of the step
size is a function of the absolute errors.

If Y(N+3) = 0. and XNE # 0., the automatic adjustment of the step
size is a function of the relative errors.

If Y(N+3) = € > 0. and XNE # 0., the automatic adjustment of the
step size is a function of the relative errors where the relative
errors are equal to the absolute errors divided by the maximum
(Y(N+3), |Y(I)|). This option removes the possibility of using

"small" functional values to compute relative error, otherwise this option

is identical to the previous option and is to be preferred over it.
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If XNE = 0., the step size G is not adjustable.

X: (INPUT,OUTPUT ,REAL)

This is the independent variable. An initial value must be specified
before calling FNOL3. FNOL3 will return with X,the terminal value of
the independent variable.

5 (INPUT,OUTPUT,REAL)

This is the name given the solution array. Y must be dimensioned at
least Y(N+3+L). Initial values for Y(1),Y(2),...,Y(N) must be
specified before calling FNOL3. If L > 0, then Y(N+3+1),...,Y(N+3+L)
may be used to calculate additional values in the routine TERM. Upon
returning from FNOL3, Y(1),...,Y(N),Y(N+3+1),...,Y(N+3+L) have the
values computed at the terminal value of X.

D: (OUTPUT,REAL)

This is the name given to the array where the derivatives are stored
and must be defined in routine DERIV. D should be dimensioned D(N).
Upon returning from FNOL3, D(1),...,D(N) have the values computed at
the terminal value of X.

DERIV:

In this routine the user must compute the N derivatives. The general

form 1is

SUBROUTINE DERIV (X,Y,D)
DIMENSION Y(1),D(1)

D(1) =+

D(Z) = e

D(N) = ---
RETURN
END
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No D beyond D(N) should be calculated. If desired, additional data may
be passed between this routine and the other user written routines via

COMMON statements.

TERM:

The user evaluates the termination criterion (T = T(X,Y(1),...,Y(N),
D(1),...,D(N)) in this routine. Auxiliary values such as Y(N+1) and
those required for plotting purposes should be calculated here because
this routine is entered only once per accepted step before termination.

A termination loop of at most four iterations starts when T undergoes
a change of sign. After the very first step of the integratiom,
termination may occur without looping when |T| < 10_6.
The general form is
SUBROUTINE TERM (X,Y,D,T)
DIMENSION Y(1),D(1)
RETURN
END
OUTPUT:

This user routine is entered at the beginning and end of the complete
integration. If M # 0, it is entered every Mth accepted step. If
M = 0 then Y(N+1) and Y(N+2), discussed under parameter M determine
the print frequency.
The general form is

SUBROUTINE OUTPUT (X,Y,D,ERROR,N,L,H)
DIMENSION Y(1),D(1),ERROR(1)

PRINT *°*

RETURN
END

X,Y,D,N, and L are the same as in the calling sequence of FNOL3.

ERROR is the name given the array which contains the absolute errors.

10
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H 1is the step size used to get to the present step. If the magnitude of a

new step size becomes less than H, = 10-6 * ]xl + 10-11, then two

1
steps are taken using the Runge-Kutta method with step size equal to
Hl or -Hl depending on the direction of integration. If the errors
are too large, the two steps will be accepted and two more steps are
taken using the Runge-Kutta method with a step size computed in the
same way as above using the current x. If the errors are still too
large after the above procedure is done ten times, then an error
message 1is written and the program stops after going to OUTPUT. If

at any step the errors are not too large, then FNOL3 continues in the

normal manner after resetting the counter back to zero.

11
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VI. EXAMPLES

The examples section of this report contains three problems which illustrate

the available options of FNOL3.

Example No. 1

Solve the first order linear differential equation

dy _
Ix wA cos (wx)

in the interval [0,37n] for the initial condition
y(0) = 0

Choose the case w = A = 1.

Use the three available methods of FNOL3 to numerically integrate the given
differential equation over [0,3n].

(1) Use the fourth order Runge-Kutta method with a constant step size
of 1.

(I1) Use the fourth order Adams-Moulton predictor-corrector formulae

with an adjustable step size to hold the relative truncation error in the window

(II11) Use the fourth order Runge-Kutta method with an adjustable step
size to hold the relative truncation error in the window [10-8,10_5].

The analytic solution of the given equation with respect to the given initial
condition is

y(x) = A sin(wx).

The actual value of sin(x) is computed for each x and compared to the calculated

value of the solution. At every fifth accepted step, the solution, sin(x), and

12
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the difference of the actual and calculated solutions are printed. These results
are in Table 1.
The main (calling) program and the necessary subroutines to accomplish the

solution of the stated problem in the manner indicated are in Appendix A.

Example No. 2

Solve the second order linear differential equation

2

d
__% = -y
dx

in the interval [0,57] for the initial conditiomns
y(0) = 0
y'(0) = 1
Reduce the second order linear differential equation to a system of two first

order equations

 _

dx y2
dy

ax ~ 1

with the initial conditions

yl(O) 0

y2(0) 1

Use the Adams-Moulton predictor-corrector method to integrate the given
differential equations over [0,57]. An adjustable step size is used with size
determined by

(1) Relative truncation error

(11) Absolute truncation error

13
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The error window is [10—8,10—5].

Two types of printing options are illustrated in this example

(D) Printing every kth step (10 in this example)

(11) Printing when the independent variable has changed by a pre-selected
amount (1 in this example)

The analytic solution of the given equation with respect to the given
initial conditions is

y(x) = sin(x)
The actual value of sin(x) is computed for each x and compared to the calculated
value of the solution. At every print cycle the solution, sin(x), and the
difference of the actual and calculated solutions are printed. These results
are in Table 2.

The main (calling) program and the necessary subroutines to accomplish the

solution of the stated problem in the manner indicated are in Appendix B.

Example No. 3

Solve the system of first order linear differential equations

dy1 "
dx = y2 (1)
dy

2
&®-TN @
dy

3 1

ax (x+l - 1) y3 (%)
dy

4 4
Ix =Ty - ™ Ly
dy

5 1
2.1 5
dx x+1 (5)

14
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in the interval [0,57] for the initial conditions

y,(0) =0
y,(0) =1
y5(0) =1
¥,(0) =1
y5(0) = 0

Use the Adams-Moulton predictor-corrector method to integrate the given
system of differential equations over [0,57]. An adjustable step size is used

_5].

with size adjusted to hold the relative truncation error in the window [10_8,10
Printing occurs every 40 accepted steps. The analytic solutions of the

given equations with respect to the given initial conditions are

y () = sin(x)
y,(x) = cos(x)
y3(x) = (xtl)e™™
y, (%) = x+e*

ys(x) = loge(x+l)

The actual values of the solutions are computed at each x and compared to
the calculated values of the solutions. At each print cycle the actual solutionmns,
calculated solutions, and differences are printed. These results are in Table 3.

The main (calling) program and the necessary subroutines to accomplish

the solution of the stated problem in the manner indicated are in Appendix C.

15
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VII. REMARKS

Some suggestions and warnings are in order based on the years of experience
with previous versions of this routine. This version of FNOL3 is a conversion
from the IBM 7090, and what was one auxiliary routine with multiple entries

has been changed to three auxiliary routines. In addition, double precision

has been deemed unnecessary due to the increased precision of the CDC 6400.

J: Adams-Moulton is the prime method of this routine, but Runge-Kutta is
needed to start, and whenever the time step changes. Adams-Moulton
requires only 2 entries:into DERIV per time step while Runge-Kutta
requires 4.

L: This parameter is a hangover from previous versions of FNOL3 in which the
user did not write an OUTPUT routine but simply specified how many (L)

auxiliary values were to be printed.

G

FNOL3 always prints initial and final values even if M has been set to
some very large value. However, some output is always needed to shed
light on how the integration has proceeded.

Printing at specified intervals cannot be insured except by fixed
timesteps or terminating and then printing. Setting M = 0 and
Y (N+2)=DELTAY in MAIN and Y(N+1)=Y(1l) in TERM, only causes no printing
until Y(1) changes by at least Y(N+2). To force printing at exact
intervals of Y(N+2) in Y(1), put FNOL3 in a loop in MAIN and in TERM set
T=Y(1)-C. In MAIN set C=Y(1l)+Y(N+2) before calling FNOL3. C may be
transmitted via the Y array or through COMMON. The final value of Y(1) of
each integration becomes the initial value for the next integration.

b 4] Unless COMMON is used, additional parameters necessary for computation

should be sent from routine to routine through the Y array in locations

starting with Y(N+4). If M # 0 then Y(N+l) and Y(N+2) are available

16




ERROR:

VIII.

NOLTR 71-2
to the programmer. If XNE = 0 then Y(N+3) is available. In other
cases these three locations have special meaning. See the discussions

on M and XNE above and in Section V.

We repeat here for emphasis. DO NOT USE a D beyond D(N)! 1In all we

have said, there is an assumption that the derivatives can be computed
explicitly from X and the current Y values. If this is not so, the

alternative 1s to perform root-finding within DERIV. If the routine

that calls FNOL3 initializes the D array, these values will be available

in DERIV. However, unless they are saved in another array, each time

DERIV is entered, the previous D's are lost.

At the start of an integration or whenever the step size changes, the

absolute truncation errors are not computed directly for the first

step. Runge-Kutta is called at that time, and its error term requires

(h) (2h) (h)

im0l 294 Yy 1 Vi ,n+1’

having y see equation IV-3. The first term,

means reaching x by taking two steps of size h, while the second

(2h)
. yi,n+l

n+1

term , means reaching x by taking one step of size 2h. It

n+l

is only after these three steps are taken that an error term can be

computed. Accepting or rejecting the first step 1s based on this error,

which is then treated as if it were the first error. At least three

Runge-Kutta steps of size h are taken before Adams-Moulton takes over.
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TABLE 1

dy _
ax wA cos (wx)

Method (I)
: o oo o

0.0 0.0 0.0 0.0

0.5 479426 .479426 ~17x10"°
1.0 .841471 .841471 ~29x107°
1.5 .997495 .997495 -35x107°
2.0 .909297 .909297 ~32x107°
2.5 .598472 .598472 -21x10"?
3.0 .141120 .141120 ~49x10710
3.5 -.350783 ~.350783 12x1072
4.0 -, 756802 -.756803 26x10 "
4.5 -.977530 -.977530 34x107°
5.0 -.958924 -.958924 33x107°
5.5 ~.705540 -.705540 25x107°
6.0 -.279415 -.279416 97x10 10
6.5 .215120 .215120 ~75x107 10
7.0 656987 .656987 ~23x107°
7.5 .938000 .938000 -33x1077
8.0 .989358 .989358 ~34x10~7
8.5 .798487 .798487 ~28x107°
9.0 .412118 .412118 -14x1077
9.424778 -39x107° -41x107° 17x10710
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0
X5
0
5
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.216974
822242
.219365
.729709
.240053
. 750397
.260741
.771085
.220706
.658950
.155075
.651199
.353455
.288410
.424778

YT=TRUE
sin(x)
0.0
.479426
.841471
.997495
.798391
.313979
.0776944
.554795
.890508
.999278
.853385
.490009
.0624391
.366984
. 765546
.979510
.877835
. 135945
-39x107°

NOLTR 71-2

TABLE 1

s wA cos(wx)

dx

Method (II)
YC=COMPUTED

sin(x) (YT-YC)
0.0 0.0
479426 22x102
841471 921072
.997495 18x1078
.798391 24x1078
.313979 16x10™8
-.0776946 17x1078
-.554795 13x10°8
-.890508 47x107°
-.999278 -59x107°
-.853384 ~16x1078
-.490009 ~23x1078
-.0624388 ~25x1078
.366985 ~24x10"°
.765546 ~18x1078
.979510 ~92x10™°
.877835 20x10~8
.135946 ~61x10"8
62x107° ~66x1078
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0.0

0.5

1.303726
2.309936
3.316146
4.322356
5.297378
6.225618
7.153858
8.082099
9.102580
9.424778

YT=TRUE
sin(x)
0.0
479426
.964548
.739048
-.173668
-.924896
-.833718
-.0575354
.764763
.974094
.316653
-39x10~°
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dy
dx

TABLE 1

= wA cos(wx)

Method (III)

YC:fg?inED (YT-¥C)
0.0 0.0
479426 12x107°
.964548 91x107
.739048 77x107°
-.173668 ~46x10"8
-.924895 -10x10~’
-.833717 “Aix10"7
~.0575345 -83x10™8
.764763 ~41x10™8
.974094 -23x1078
.316653 -51x10"8
74x1078 -78x10~8
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.381345
.194792
.008240
.821688
.322058
.055814
.710873
.262094
.953946
.645797
.337648
.029500
. 721351
.413203
.105054
.796905
. 488757
.180608
.872459
.564311
.256162
. 948014
.639865
.707963
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TABLE 2
&y |
I
dx

Relative Truncation Error

YC=COMPUTED
sin(x)
0.0
.372169
.930140
.905838
314477
~.179488
-.792088
~1.00000
-.852680
~.323324
.354718
.869636
.984638
646836
.0115755
-.629009
-.980332
-.880833
-.376267
.301332
.840358
.992931
.688887
.0680464
76x10™8

YT=TRUE
sin(x)
0.0
.372169
.930139
.905838
.314476
-.179488
-.792087
-.999999
-.852679
-.323324
.354717
.869635
.984636
.646835
.0115752
-.629008
-.980330
-.880831
-.376266
.301332
.840356
.992928
.688885
.0680457
2721078

21
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0.0
27x10°
-22x10"
-52x10"
-39x10°
11x10~
72x10°
12x10°
11x10~
61x10"
-30x10"
-12x10~
-17x10"
-13x10"
-32x10"
99x10~
20x10~
21x10°
12x10~
-34x10"
-19x10~
-27x10"
-22x10"
-69x10"
-50x10"
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0.0
1.008358
2.030260
3.052163
4.074065
5.095968
6.117870
7.139773
8.161675
9.183578
10.205480
11.227383
12.249285
13.271187
14.293090
15.314992
15.707963

NOLTR 71-2
TABLE 2
oy

» =y
dx2

Absolute Truncation Error

o o
0.0 0.0 0.0 .
.845958 .845957 ~91x1078
.896293 .896290 -30x10~’
.0893123 .0893108 T
-.803100 -.803096 46x10~7
~.927340 -.927331 89x10~/
-.164568 -.164563 43x10~7
.755619 755612 ~75%10"7
.953050 .953035 -15x107°
.238876 .238868 -79x10~7
-.703788 -.703778 96x10
-.973273 -.973253 21x107°
-.311811 ~.311799 12x1078
.647905 647894 ~11x1078
.987895 .987869 ~27x107°
.382952 .382935 ~17x107°
76x10~7 27x10™8 ~74x1077
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TABLE 3
YC=COMPUTED y YT=TRUE y (YT-YC)
0.0 0.0 0.0
1.0 1.0 0.0
1.0 1.0 0.0
1.0 1.0 0.0
0.0 0.0 0.0
. 742059 .742058  -13x10"°
-.670335 -.670335 91x107°
.329598 .329598 -20x107°
12.3342 12.3342 15x10”7
1.19557 1.19557 19x1078
-.999753 -.999753 34x10”8
-.0222392 -.0222391 63x1070
-.0522659 -.0522659  -37x10710
113.559 113.559 35x1078
1.73874 1.73874 201078
.711517 .711516 ~31x1078
.702670 .702669 ~43x10™8
.00683235 .00683235  -18x10"1%
1188.93 1188.93 59x107°
2.08875 2.08875 20x10"8
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15.7080
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TABLE 3

YC=COMPUTED y

-.0347456
-.999397
.815249x10~
12839.3
2.34751

3

-.660999
.750388
.922205x10"

139289.

2.55289

4

.995795
-.0916176

.100723x10"

.151197x107
2.72320

4

.797718x10'6

~1.00000
.251792x10™°
.663563x107
2.81589

24

YT=TRUE y

-.0347457
-.999396
.815249x10"
12839.3
2.34751

3

-.660999
.750387
.922205x10"

139289.

2.55289

4

.995794
-.0916177

.100723x10"

.151197x10’
2.72320

4

.587949;{10'6

-1.00000
.251792x10"
.663564x107

2.81589

5

(YT-YC

-98x10~
71x10~
43x10°
86x10"
20x10"

70x10"
-56x10"
14x10°
12x10°
20x10~

-11x10~
-90x10~
27x10~
15x10~
20x10~

-21x10"
12x10°
87x10
75x10~
20x10~

)
9
8
12
4
8

8
8
12
2
8

7
9
13
1
8

8
7
14
1
8
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APPENDIX A
LISTING OF EXAMPLE NOes 1 WITH CONTROL CARDS
FOR THE NOLOS SYSTEM USED AT NOL

CCAFNOL,»T100sCM60000«SYSTEM3039,0RLOW,
ATTACH(ABCYNOLBIN)

COPYN(OsDEF»ABC) FIRST PARAMETER 1S THE NUMBER 10!
RETURN(ABC)

FIN(L)

LOAD(LGO)

DFF .

! RECORD SEPARATOR = (7-8-9) PUNCH IN COL. 1
REWIND (ABC)

FNOL3,y1sABC
' RECORD SEPARATOR = (7-8-9) PUNCH IN COLs 1

PROGRAM EX1 (INPUT»OUTPUT)

EXAMPLE NO. 1
SOLVE THE INITIAL VALUE PROBLEM DY/DX=A*W*COS({wWX)

USING THE FOLLOWING METHOLS

4TH ORDER RUNGE-KUTTA (CONSTANT STEP)
4TH ORDER ADAMS—-MOULTON METHOD (VARIABLE STEP)

(
( )
( I) 4TH ORDER RUNGE-KUTTA (VARIABLE STEP)

aNaNaNaEaNaNaNaNa!

DIMENSION Y(20),D(20)
EXTERNAL DERIV+TERM,OUTPUT
COMMON AW
A=1.
W=1.
DO 200 J=1,3
q NUMBER OF EQUATIONS
N=1
C INITIAL STEP SIZE
G=41
C NUMBER OF EXTRA Y!'S
L=2
€ NUMBER OF ACCEPTELD STEPS TAKEN BETWEEN PRINTS
M=5
C FRROR WINDOW EXPONENT
(NE=5.
Y({1)=0.
Y(N+3)=.01
X=0e
PRINT 100N
1000 FORMAT (1H1 94X s1HXs17XsGHYT=TRUE Ys12X913HYC=COMPUTED Yy»11Xy
1 10H (vyT-YQC))
CALL FNOL3 (JsNsGoaL sMsXNE+sXsYsDIDERIV,TERMH»OUTPUT)
200 CONTINUE
STOP
FND




1000

ORLOW 039 CCAFNOL
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APPENDIX A CONTINUED

SUBROUTINE DERIV (X»Y,D)
DIMENSION D(1)

COMMON AW

D(1)=A*WXCOS (W*X)

RETURN

END

SUBROUTINE TERM (XsYsDsT)
DIMFNSION Y(1)

COMMON A,W

T=X-9.424778
Y(5)=A®SIN(W*X)
YU16)=Y(5)=Y (1)

RETURN

END

SUBROUTINE OUTPUT (XsYsDyERRORsNyL,yH)

DIMENSION Y (1)

PRINT 1000y XsY(5)sY(1)sY(6)
FORMAT (1H »F1046510X33(E13.6510X))

RETURN
END

END OF FILE

(6-7-8=9)

PUNCH IN COL.

1
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APPENDIX B
LISTING OF EXAMPLE NO. 2

PROGRAM EX2 (INPUTsQUTPUT)
FXAMPLE NO. 2

SOLVE D*%2Y/DX¥%2=-Y

USING ADAMS-MOULTON PREDICTOR CORRECTOR WITH
STEP SIZE CONTROLLED BY

(1) RELATIVE ERROR
(11) ABSOLUTE ERROR

NONNNNNONNN

DIMENSION Y(30),0(30)
EXTERNAL DERIV,,TERM,OUTPUT
C ADAMS-MOULTCN METHOD
J=2
C NUMBER OF EQUATIONS
N=2
C MINIMUM RELATIVE ERRCR DIVISOR
Y(N+3)=,001
C NUMBER OF EXTRA Y!'S
L=2
C NUMBER OF ACCEPTED STEPS LETWELN PRINT CYCLES
M=10
C EXPONENT ERROR WINDOW
XNE=5,
C INITIAL STEP SIZE
G=.01
C INITIAL CONDITIONS
X=0
Y(1)=0e
Y{2)=1.
PRINT 1000
1000 FORMAT (1H1 y4Xs1HX 313X 13HYC=COMPUTED Ys916Xs9HYT=TRUE Yyl11X»
1 10H (YT=-YCY)
CALL FNOL3(JsNs»GsL s My XNEsXsYsDsDERIVSTERM,0UTPUT)
C RESET THE PRINTING OPTION
M=0
Y(N+2)=1,
C RESET THE INITIAL CONDITIONS
X=0.
Y(1)=0.
Y(2)=1.
C CHANGF TO ARSOLUTF ERRDOR
Y{N+3)==Y({N+3)
PRINT 1000
CALL FNOL3(JsN»GsLsMsXNEs X9 YsDsDERIVSTERMHQUTPUT)
STOP
FND




1000
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APPENDIX B CONTINUED

SUBROUTINE DERIV(XsY,sD)
DIMENSION Y(1),D(1)

D(1)1=Y(2)
D(2)==Y(1)
RETURN
END

SUBROUTINE TERM(XsYsD»T)

DIMENSION Y(1)

T=15.707963~X

Y(3)=X

Y(6)=STIN(X)

Y(7)=Y{(6)~Y(1)

RETURN

END

SUBROUTINE OQUTPUT (X, YsDyERRORNyL 4H)
DIMENSION Y(1)

LF=N+4

LL=N+3+L

PRINT 1000y XsY(1)s(Y(I)sI=LF,LL)
FORMAT(1H ,F106+10Xs3(E13.6,10X))
RETURN

END
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APPENDIX C
LISTING OF EXAMPLE NO. 3

PROGRAM EX3 (INPUT,OUTPUT)
EXAMPLE NO. 3

SOLVE THE SYSTEM OF FIRST ORDER EQUATIONS

DY(1)/DX=Y(2)

DY(2)/DX==Y (1)
DY(3)/DX=(1e/(X+1e)=1la)¥*Y(3)
DY(4)/DX=Y(4)=X+1.
DY(5)/DX=14/(X+1,)

USING ADAMS-MOULTON PREDICTOR CORRECTOR METHOD WITH
STEP SIZE CONTROLLED BY RELATIVE ERROR

a¥aNalaNaNaNaNaNaka¥aNaXa)

DIMENSION Y(30),sD(30)
EXTERNAL DERIVsTERM,OUTPUT
C ADAMS-MOULTON METHOD
J=2
C NUMBER OF EQUATICNS
N=5
C MINIMUM RELATIVE ERROR DIVISOR
Y(N+3)=,01
C NUMBER OF EXTRA Y!'S
L=10
C NUMBER OF ACCEPTED STEPS BETWEEN PRINT CYCLES
M=40
C EXPONENT ERROR WINDOW
XNE=5,
C INITIAL STEP SIZE
G=.02
C INITIAL CONDITIONS
X=0s
Y{1)=0.
Y(2)=1.
Y(3)=1.
Y{(4)=1,
Y(5)=0,
PRINT 100N
1070 FORMATUIHT 34Xy 1HT 313X s T4HYC=COMPUTFD YI4,14X,10HYT=TRUE YIs11X,

1 10H (YT=YC))

CALL FANOL3(JsNsGsL sMsXNEsXsYsDsDERIVHTERM,0UTPUT)
5T0OP

FND
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APPENDIX C CONTINUED

SUBROUTINE DERIV(XsYsD)
DIMENSION Y(1)sD(1)
D(1)=Y(2)
D(2y==Y(1)
D(3)=(le/(X+1e)=1e)¥Y(3)
D&))=Y (4)=-X+1.
DIS)=1e4/(X+14)
RETURN
END
SUBROUTINE TERM(XsYsD»sT)
DIMENSION Y(1)
T=X-5.%3,141592536
Y(9)=SIN(X)
Y(10)=COS(X)
Y{11)=(X+1e ) *EXP(=X)
Y{12)=X+EXP(X)
Y(13)=ALOG(X+1.)
DO 10 I=14,18
Y{I)=Y(I=-5)=-Y(I=13)
10 CONTINUE

RETURN
END
SUBROUTINE OUTPUT(XsYsDHsERRCRsNsL sH)
DIMENSION Y (1)
PRINT 1000, X

1000 FORMAT(1HO 50X »3HX= sFT7.4)
J=N+3
K=2#N+3
DO 2C I=1,N
J=J+1
K=K+1
PRINT 2000+ IsY(I)sY(J)sY(K)

2000 FORMAT(1H +15915X93(E13.6,510X))

20 CONTINUE

RETURN
END
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APPENDIX D
LISTING OF FNOL3

SUBROUTINE FNOL3(JsNN»GsL ¢sMPRIXNEsX»YsDyDERIVyTERM,QUTPUT)
JEINTEGRATION METHOD CONTROL
NN=NUMBER OF SIMULTANEOUS DIFFERENTIAL EQUATIONS
G=FIRST INTERVAL OF INTEGRATION
LaNUMBER OF Y$S GREATER THAN N TO BE PRINTED
MPR=PRINT FREQUENCY
XNE=CONTROL FOR INTERVAL OF INTEGRATION
X=INDEPENDENT VARIABLE
Y=DEPENDENT VARTABLE
D=ARRAY CONTAINING DERIVATIVES
DERIV=SUBROUTINE IN WHICH DIFFERENTIAL EQUATIONS ARE FOUND
TERM=SUBROUTINE FOR TERMINATION CCNDITION
OUTPUT=SUBROUTINE FOR PRINTING CUTPUT
NRET=TERM LOOP COUNTER
NPR=COUNT OF STEPS SINCE LAST PRINT
PC=Y(N+1)=PRINT CONTROL OTHER THAiN STEP COUNT
JJ=J-2=0 FOR AMy=1 FOR RK,+1 FOR RKZ2
MK=AM RK STEP COUNT
XD=DP FORM OF X
SUBROUTINE CAN ALSO BE RUN IN DOUBLE PRECISION BY REMOVING
'*C* IN COLUMN 1 ON THE DOUBLE PRECISION STATEMENT
DOUBLE PRECISION XDsYDsYPsYCs YKsHsHC X5y XDSsHSsHN,yHD24,HDO

DIMENSION C(3)sY(30)sYD(30)sYP(30)sYC{30)sD(50)sDM{30s4)9+DK(304+4)

1,ERROR{30),YK(30)

DATA EP6+FEP114M4/)1eE-6531eE=11,y=-4/
DATA (C(K)sK=1+3)/2%e45414/
DATA HMAXS5/1.,F35/

NHTS=0

FP2=0.

N=NN

JJd=J=-2

H=G0

HN=H

MK=1

NRET=M4

JTEST=1

IF (JJ «LTe. 0) JTEST=4
IF (XNE+EQe O.) GO TO 15
EC=Y(N+3)
EUP=10, %% (~-XNF)
ELO=EUP*,001
EM=ELO#31,6227766

XD=X

XS=XD

DO 20 I=1,N

ERROR(1)=0.

YO(I) =Y (1)

CALL DERIV(XsY»sD)

CALL TERM (XsYsDsF)
PRINT
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50 CALL QUTPUT(XsYsDsERRORSN,L sH)
IF (NRET) 653604955
55 PRINT 3000, HN
3000 FORMAT(108HMHIEXECUTION TERMINATED BECAUSE INTERVAL OF INTEGRATION L
1ESS THAN 1.0E ~6 TIMES INDEPENDENT VARIABLE (X). H =31PE1S5.7)
STOP
60 RETURN
65 NPR=0
IF (MPR JLE. 0) PC=Y(N+1)
100 IF (JTEST EQe 5 «ANDe H «NEe« HN) GO TO 455
IF (JJ «GE. 0) H=HN
IF (MK «NEe O «ORe JJ «NEs 0} GO TO 300
------ THE ADAMS MOULTON METHOD
200 HD24=H/24,
JAM=0
DO 210 I=1,N
YPI=(55*¥DM (151 )+37%¥DM(]92))=(5Ge¢*DM(1+3)4+9.%#¥DM(144))
YP(I)=YD(1)+HD24%YP]
Y(I)=YP(])
210 CONTINUE
X=XD+H
CALL DERIV(XsYsDM(154))
DO 220 I=1,N
YPI=(Qs¥DM(T194)+19e¢%*DM(I1451)+DM(1+2))-5.%#DM(],3)
YCUL)=YD(])+HD24*YP]
ERROR(IN=(YP(I)-YC(I))/1l4e
THIS ADDS IN A 2D CORRECTION
YC(I)=YC(I)+ERROR(I)
220 CONTINUE
IF (XNE«NE«ses0O) GO TO 700
GO TO 455
—————— THE RUNGE KWUTTA METHOD
300 50 TO (3015930953089309:303),JTEST
301 DO 302 I=1,sN
YK(I)=YD(T])
302 CONTINUE
XDS=XD
GO TO 309
303 DO 304 1I=1sN
YK(T)Y=YC(])
304 CONTINUE
XDS=XD+H
308 HS=H
H=2 « ¥H
GO TO 320
JAM=1
DO 310 I=1,4N
Y{I)=YD(I)
DK(I»1)=D(1)
310 CONTINUE

D=2
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IF (JTEST JLEe. 2) CALL DERIVI(X,Y,DK)
IF (MK .GT. 1 «0OR. JTEST .GT. 1) GO TO 320
DO 315 1=1,N
DM(T44)=DK(T+1)
315 CONTINUE
320 D0 335 K=2y4
HC=H*C(K-1)
DO 330 1=1N
Y(1)=YD(I) + HCH*#DK(IsK=1)
330 CONTINUE
X=XD+HC
CALL DERIVIXsYsDK(1sK))
335 CONTINUE
HD6=KH/6.
DO 340 I=1,N
YPI=DK(Is1)+DK (I s4)+2.%(DK(I1+2)+DK(Is3))
YC(1)=YD(I)+HD6*YPI]
340 CONTINUE
GO TO (360+390+370+455+370)JTEST
360 DO 365 I=1,N
YP(1)=YC(I])
365 CONTINUE
JTEST=3
GO TO 308
370 DO 380 I=1sN
YO(I)Y=YP(I)
YP(IYy=YC(])
380 CONTINUE
H=HS
XD=XD+H
JTEST=2
IF (MK +EQ. 1) GO TO 309
GO TO 451
390 DO 400 1=1,N
ERROR(I)=(YC(I)=YP(T1))/15.
YC(I)=YC(I)+ERROR(I)
YP(1)=YC(])
400 CONTINUE
JTEST=5
IF (XNE.NE.«O) GO TO 700
—————— ACCEPT THE STEP SIZE
450 1F (JAM ,EQ. 0) GO TO 455
IF (MK EQe 3 JANDe JJ +EQ. 0) GO TO 455
IF (MK «NE., 1) ~AO TO 303
[F (JTEST .EQ. 1) GO TO 455
451 DO 452 I=1,N
Y{1)=YD(I)
452 CONTINUE
GO TO 466
455 DO 459 NQ=1sN
YDINQ)Y=YC(NQ)
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YINQ)=YD(NQ)
459 CONTINUE
IF (JJ .GE. 0) JTEST=1
IF (MK «NEe O oORe JJ «NEe C «ORs NRET <+NEe M&4) GO TO 465
DO 460 I=1,4N
DM(1+4)=DM(1+2)
DM(142)=DM(143)
DM(1+3)=DM(1,1)
460 CONTINUE
465 XD=XD+H
466 X=XD
IF (MK +EQ. 3) MK=0
CALL DERIV(XsY»D)
DO 470 I=1,N
DM(TsMK+1)=2D(1)
470 CONTINUE
FP=F
TALL TERM (XsYsDsF)
------ DO YOU TERMINATE
500 IF (ABS(F) «LE. EP6) GO TO 800
IF (FP «EQ. 0.) GO TO 510
IF (NRET «NE. M4 OR. F#FP .LT. EP11) GO TO 805
510 XS$=XD
IF (MK o NE. O ANDe H «EQe HN) MK=MK+1
------ DO YOU PRINT
600 NPR=NPR+1
IF (MPR «LE. 0) GO TO 610
IF (NPR .GE. MPR) GO TO 50
GO 70O 100
610 IF (ABS(Y(N+1)-PC) «GE. Y(N+2)) GO TO 50
GO TO 1090
—————— DETERMINING THE STEP SIZE
700 HB = HMAXS
DO 760 I = 1N
Z2=ABS(ERRORI(I1))
IF (YC(I) JEQe 0.) GO TO 720
22=YCL(1)
22=ABS(22)
IF (EC) 720,710,705
705 IF (EC oGT. Z2ZZ) ZZ=EC
710 2=2/22
720 IF(ZeGToELOCANDeZ.LTLEUP) GOTO 750
HB = AMINI (HB,EM/(Z+EP11))
GOTQ760
750 HB=AMIN1(HB,1,)
760 CONTINUE
1F (HB .NE. l.) GO TO 765
NHT S=0
GO TO 450
T65 HN=H*HB *% 4,2
IF (MK oNE. 1) JTEST=1




770

780

7Q0

195

810

€820

&30
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MK=1

IF (HBeLT.1ls) GOTO 770

[F (ABS(HN) +GTe ABS(4.%#H)) HN=4,%H
NHTS=0

GOTO 450

HEPS=ABS(X*EP6) + EPI11

1F (ABS(HN) «LT. ABS(H/&4e)) HN=H/&,
IF (ABS(HN) +GT. HEPS) GO TO 790
NHTS = NHTS + 1

IF (NHTS .LE. 10) GO TO 780

NRET = 1

GO TO 450

HN=STGN (HEPSsHN)

IF (NHTS .GT. 1) GO TO 450

IF (NHTS .GT. 1) NHTS=0

IF (JAM .FQ. D) GO TO 100

DO 795 1I=1,4N

YD(I)=YK(T)

CONTINUE

XD=XDS

JTEST=1

GO TO 100

-THE TERMINATION LOOP

NRET=0

IF (NRET LT. 0) GO TO BOG6
H=XD=-XS

GO TO 50

IF(F*FP.LT.0.) GOTO 810

IF (F¥FP2,LT.0.) GOTO 820
GO TO 800

FP2 =FP

HP =H

GOTO 830

FP =FP2

HP =H + HP
NRET=NRET+1
H=HP®F / (FP=F)

JTEST=4
GOTO 300
END
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APPENDIX E

FNOL3 VS. FNOL2

-1, FNOL3 does not allow the step size to be changed by more than a factor
of four., 1In FNOL2, the step size is allowed to change by any factor, which
can cause the step size to be too large or too small in some cases.

E-2, If the step size is too small, FNOL3 accepts the step and the step size
is increased for the next step. FNOL2 does not accept the step.

E-3, FNOL3 calls the output routine only if the step was accepted. FNOL2
calls the output routine and then checks to see if the step is acceptable.

E-4. In FNOL3, the truncation errors are added at each step to the dependent
varilables. FNOL2 does not add the truncation errors to the dependent variables.

E-5. FNOL3 allows the step size to be changed when using the Runge-Kutta
method. The step size cannot be changed using the Runge-Kutta method in FNOL2.

E-6. In FNOL3, the option was added that if relative error is used to adjust
the step size and the user sets Y(N+3)=e(e > 0), then whenever IY(I)| < Y(N+3),
relative error is calculated by dividing truncation error by Y(N+3) rather than
Y(I). Otherwise perfect accuracy would be required of every variable passing
through 0.

E-7. FNOL3 uses XNE, a floating point rather than an integer, to allow more
control over the step size.

E-1







ARGUMENT
J

N

¢

D
DERIV
TERM

OUTPUT

TYPE
INTEGER
INTEGER
REAL
INTEGER
INTEGER
REAL
REAL
REAL

REAL
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APPENDIX F

FNOL3 ARGUMENT LIST SUMMARY

INPUT

OUTPUT

YES

YES

YES

YES

YES

YES

YES

YES

NO

YES

YES

YES

REMARKS
The integration method
The number of equations
The initial step size
The additional output Y's
The print frequency
The control for step size
The independent variable
The dependent variables
The derivatives
CALL DERIV(X,Y,D)

CALL TERM(X,Y,D,T)

CALL OUTPUT (X,Y,D,ERROR,N,L,H)
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